Predicting the present with Google Trends

- -Hyunyoung Choi
- -Hal Varian

Outline

- > Problem Statement
- > Goal
- Methodology
- Analysis and Forecasting
- > Evaluation
- > Applications and Examples
- > Summary and Future work

Problem Statement

- > Government agencies and other organizations produce monthly reports on economic activity
 - Retail Sales
 - House Sales
 - Automotive Sales
 - Travel
- Problems with reports
 - Compilation delay of several weeks
 - Subsequent revisions
 - Sample size may be small
 - Not available at all geographic levels
- Google Trends releases daily and weekly index of search queries by industry vertical
 - Real time data
 - No revisions (but some sampling variation)
 - Large samples
 - Available by country, state and city
- > Can Google Trends data help predict *current* economic activity?
 - Before release of preliminary statistics
 - Before release of final revision

Goal

- Familiarize readers with Google Trend data and its importance
- Illustrate some simple statistical methods that use this data to predict economic activity
- ➤ Illustrate this technique with some examples

Methodology

➤ Query index: the total query volume for search term in a given geographic region divided by the total number of queries in that region at a point in time.

http://www.google.com/insights/search

Web Search Volume: Real Estate

United States, 2004 - present All Categories > Real Estate

Model 0:

$$\log(y_t) \sim \log(y_{t-1}) + \log(y_{t-12}) + e_t$$

■ This model predicts the sales of this month using the sales of last month and 12 months ago

Model 1

$$\log(y_t) \sim \log(y_{t-1}) + \log(y_{t-12}) + x_t^{(1)} + e_t$$

■ This model uses an extra predictor, i.e. Google query index to predict the sales of the present.

$$\log(y_t) = 2.312 + 0.114 \cdot \log(y_{t-1}) + 0.709 \cdot \log(y_{t-12}) + 0.006 \cdot x_t^{(1)}$$

- ➤ Sales of present month is positively correlated with the sales of last month, the month 12 months before and the Google query
- Note: Coefficient corresponding to query volume is small, probably because it is not taken in logarithm form

$$\log(y_t) = 2.007 + 0.105 \cdot \log(y_{t-1}) + 0.737 \cdot \log(y_{t-12}) + 0.005 \cdot x_t^{(1)} + 0.324 \cdot I(\text{July } 2005)$$

There was a special promotion week in July 2005, so they have added a dummy variable to control for that observation and re-estimated the model

Few Questions

> Why query index, not number of queries

- Number of queries" might vary with change in population or availability of internet or power cut.
- On the other hand, query index won't. That's why it might be a better predictor.

Why Log

- It reduces the effect of the outliers
- Outlier may over-predict the sales in some month, but if we use log, its effect will be minimized

Evaluation

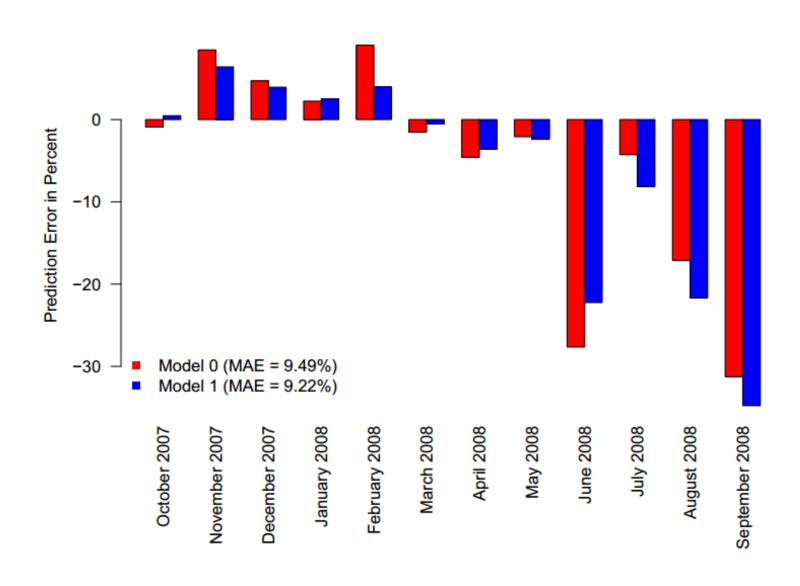
> Prediction error: Predicted value – observed value

$$PE_t = \log(\hat{y}_t) - \log(y_t) \approx \frac{y_t - \hat{y}_t}{y_t}$$

➤ Mean absolute error: Average of the absolute values of the prediction errors

$$MAE = \frac{1}{T} \sum_{t=1}^{T} |PE_t|$$

Prediction Error Plot

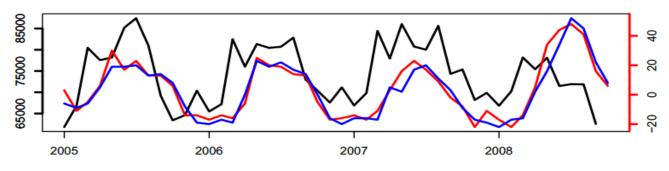


Example 1: Retail Sales

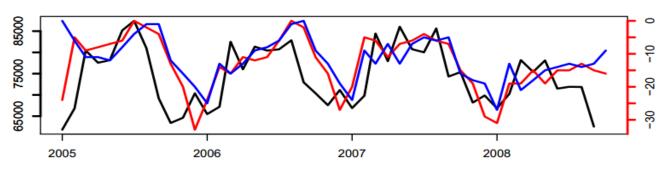
NAICS Sectors			Google Categories		
ID	Title	ID	Title		
441	Motor vehicle and parts dealers	47	Automotive		
442	Furniture and home furnishings stores	11	Home & Garden		
443	Electronics and appliance stores	5	Computers & Electronics		
444	Building mat., garden equip. & supplies dealers	12-48	Construction & Maintenance		
445	Food and beverage stores	71	Food & Drink		
446	Health and personal care stores	45	Health		
447	Gasoline stations	12-233	Energy & Utilities		
448	Clothing and clothing access. stores	18-68	Apparel		
451	Sporting goods, hobby, book, and music stores	20-263	Sporting Goods		
452	General merchandise stores	18-73	Mass Merchants & Department Stores		
453	Miscellaneous store retailers	18	Shopping		
454	Nonstore retailers	18-531	Shopping Portals & Search Engines		
722	Food services and drinking places	71	Food & Drink		

Table 2.1: Sectors in Retail Sales Survey

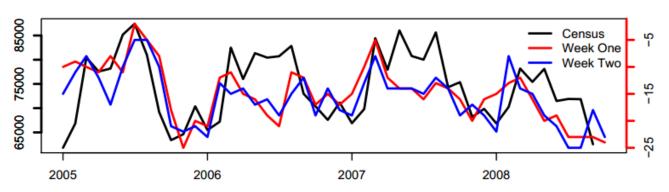
273: Motorcycles



467: Auto Insurance



610: Trucks & SUVs



➤ Model 0:

$$\log(y_t) = 1.158 + 0.269 \cdot \log(y_{t-1}) + 0.628 \cdot \log(y_{t-12})$$

➤ Model 1.

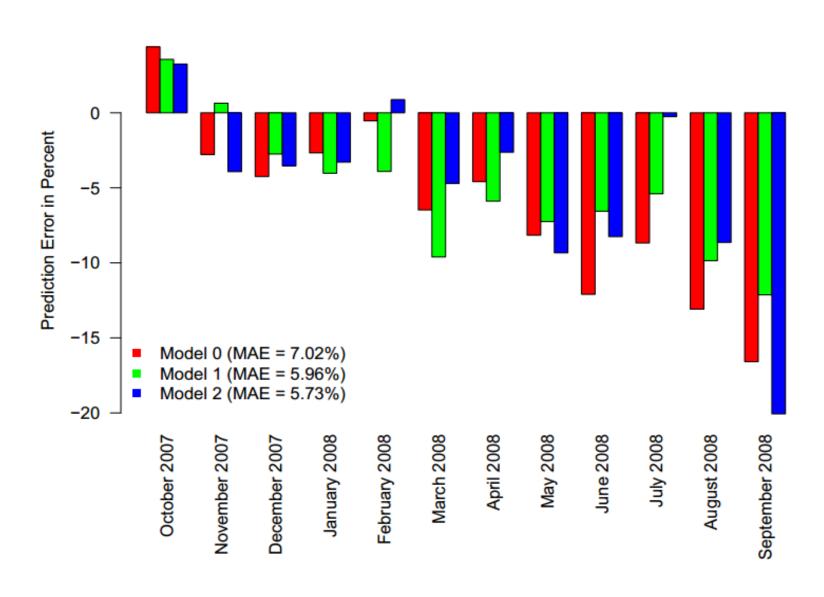
$$\log(y_t) = 1.513 + 0.216 \cdot \log(y_{t-1}) + 0.656 \cdot \log(y_{t-12}) + 0.007 \cdot x_{610,t}^{(1)}$$

➤ Model 2:

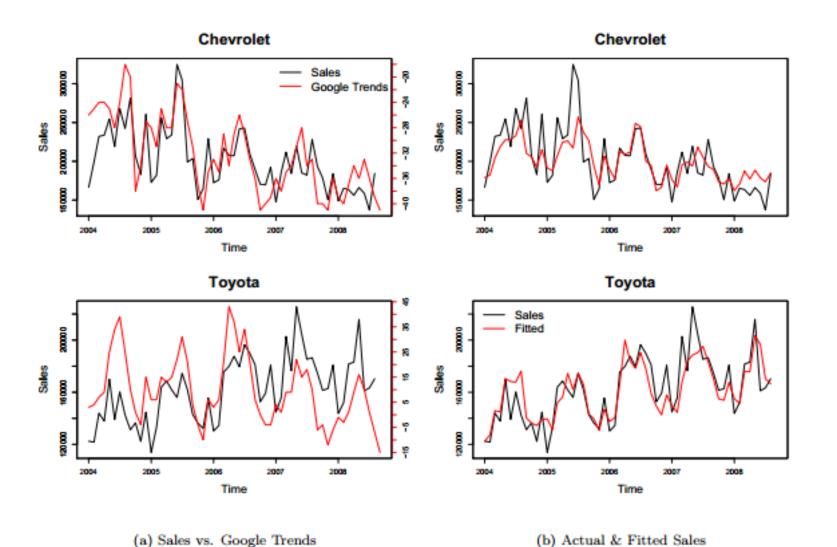
$$\log(y_t) = 0.332 + 0.230 \cdot \log(y_{t-1}) + 0.748 \cdot \log(y_{t-12})$$
$$-0.001 \cdot x_{273,t}^{(2)} + 0.002 \cdot x_{467,t}^{(1)} + 0.004 \cdot x_{610,t}^{(1)}$$

Note: "R squares" moves from .6206(Model 0) to .7852(Model 1) to .7696(Model 2).

Prediction Error



Example 2: Automotive Sales

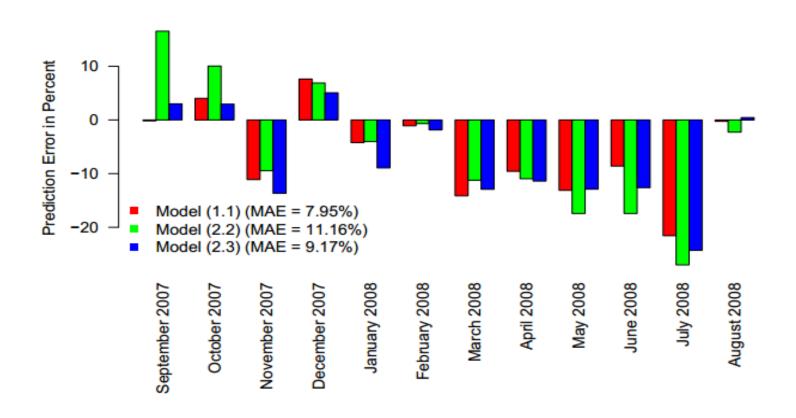


$$\log(y_{i,t}) = 2.838 + 0.258 \cdot \log(y_{i,t-1}) + 0.448 \cdot \log(y_{i,t-12}) + \delta_i \cdot I(\text{Car Make})_i$$
$$+0.002 \cdot x_{i,t}^{(1)} + 0.003 \cdot x_{i,t}^{(2)} - 0.001 \cdot x_{i,t}^{(3)}, \ e_{i,t} \sim N(0, 0.13^2).$$

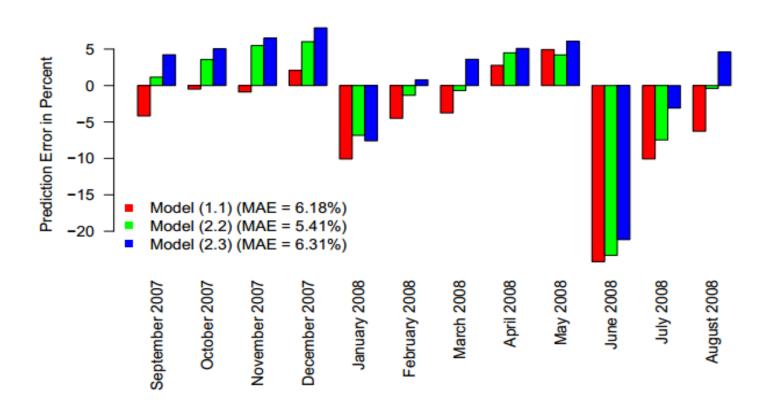
Chevrolet:
$$\log(y_{i,t}) = 7.367 + 0.439 \cdot \log(y_{i,t-12}) + 0.017 \cdot x_{i,t}^{(2)}, e_t \sim N(0, 0.114^2)$$

Toyota :
$$\log(y_{i,t}) = 4.124 + 0.655 \cdot \log(y_{i,t-12}) + 0.003 \cdot x_{i,t}^{(2)}, \ e_t \sim N(0, 0.093^2)$$

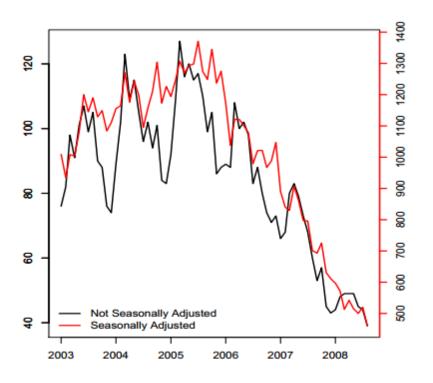
Prediction Error of Chevrolet

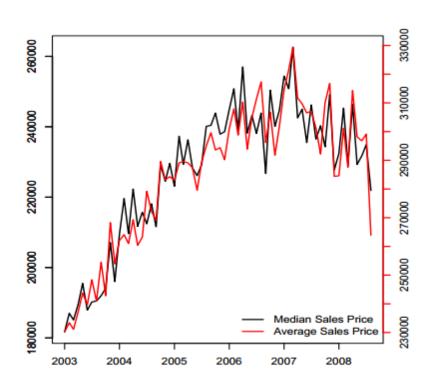


Prediction Error of Toyota



Example 3: Home Sales





(a) Number of New House Sold

(b) Prices of New House Sold

> Model 0:

$$\log(y_t) \sim \log(y_{t-1}) + e_t$$

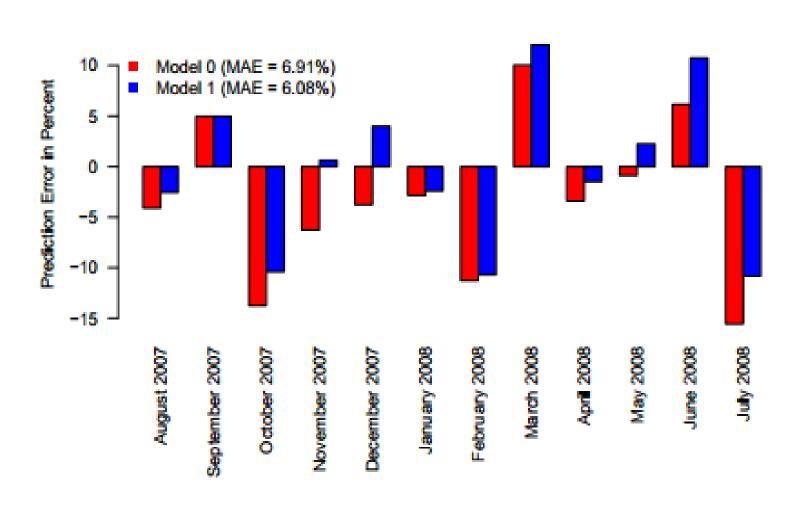
> Model 1:

Model 1:
$$\log(y_t) = 5.795 + 0.871 \cdot \log(y_{t-1}) - 0.005 \cdot x_{378,t}^{(1)} + 0.005 x_{96,t}^{(2)} - 0.391 \cdot \text{Avg Price}_{t}^{(1)}$$

Observations:

- House sales at t -1 is positively related with house sales at t
- Search Index on 'Rental Listings and Referrals" is negatively related to sales
- Search Index for "Real Estate Agencies" is positively related to sales
- Average housing price is negatively associated with sales

Prediction Error



Example 4: Travel

- Google Trend Data is useful in predicting visits to certain destination
- ➤ In this example, data has been taken from Hong Kong Tourism Board
- ➤ Data from January 2004 to August 2008 has been used.

```
\log(y_{i,t}) = 2.412 + 0.059 \cdot \log(y_{i,t-1}) + \beta_{i,12} \cdot \log(y_{i,t-12}) \times \text{Country}_{i}
+ \delta_{i} \cdot \text{Beijing} \times \text{Country}_{i} + 0.001 \cdot x_{i,t}^{(2)} + 0.001 \cdot x_{i,t}^{(3)} + e_{i,t}, \ e_{i,t} \sim N(0, 0.09^{2})
```

≻Observation

- Arrivals last month are positively related to arrivals this month
- Arrivals 12 months ago are positively related to arrivals this month
- Google searches on 'Hong Kong' are positively related to arrivals
- During the Beijing Olympics, travel to Hong Kong decreased.

ANOVA Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
log(y1)	1	234.07	234.07	29,220.86	< 2.2e-16	***
Country	8	5.82	0.73	90.74	< 2.2e-16	***
log(y12)	1	9.02	9.02	1,126.49	< 2.2e-16	***
$x_{i,t}^{(2)} \\ x_{i,t}^{(3)}$	1	0.44	0.44	54.34	1.13E-12	***
$x_{i,t}^{(3)}$	1	0.03	0.03	3.87	0.049813	*
Beijing	1	0.41	0.41	51.23	4.53E-12	***
Country:log(y12)	8	0.23	0.03	3.59	0.000504	***
Country:Beijing	8	0.14	0.02	2.12	0.033388	*
Residuals	366	2.93	0.01			

>Observations:

- Most of the variance is explained by lag variable of arrivals
- Google trend variable is statistically significant

Thank You

Summary

- ➤ Google Trends significantly improves prediction of Economic Activities, up to 15 days in advance of data release.
- > "R squared" value improves significantly.
- > Mean absolute error for predictions declines Significantly.

>Further Work

- Google query data can be combined with other social network data for better prediction
- Can be used to predict the success of a movie
- Can be used for metro level data and other local data